Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters
نویسندگان
چکیده
Solar thermophotovoltaic (STPV) systems convert solar energy into electricity via thermally radiated photons at tailored wavelengths to increase energy conversion efficiency. In this work, we report the design and analysis of a STPV system with 2D photonic crystals (PhCs) using a high-fidelity thermal-electrical hybrid model that includes the thermal coupling between the absorber/emitter/PV cell and accounts for non-idealities such as temperature gradients and parasitic thermal losses. The desired radiative spectra of the absorber and emitter were achieved by utilizing an optimized two-dimensional periodic square array of cylindrical cavities on a tantalum (Ta) substrate. Various energy loss mechanisms including re-emission at the absorber, low energy emission at the emitter, and a decrease in the emittance due to the angular dependence of PhCs were investigated with varying irradiation flux onto the absorber and resulting operating temperature. The modeling results suggest that the absorber-to-electrical efficiency of a realistic planar STPV consisting of a 2D Ta PhC absorber/emitter and current state of the art InGaAsSb PV cell (whose efficiency is only 50% of the thermodynamic limit) with a tandem filter can be as high as 10% at an irradiation flux of 130 kW/m and emitter temperature 1400 K. The absorber-to-electrical STPV efficiency can be improved up to 16% by eliminating optical and electrical non-idealities in the PV cell. The high spectral performance of the optimized 2D Ta PhCs allows a compact system design and operation of STPVs at a significantly lower optical concentration level compared with previous STPVs using macro-scale metallic cavity receivers. This work demonstrates the importance of photon engineering for the development of high efficiency STPVs and offers a framework to improve the performance of both PhC absorbers/emitters and overall STPV systems. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Photonic crystal enhanced silicon cell based thermophotovoltaic systems.
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm(-2) at temperature T = 1660 K when im...
متن کاملLarge-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters
The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy conversion. In this study, a fabrication route facilitating large-area photonic crystal fabrication with high fabrication uniformity and accuracy, based on interference lithog...
متن کاملFabrication of an Omnidirectional 2D Photonic Crystal Emitter for Thermophotovoltaics
In a thermophotovoltaic (TPV) system, a heat source brings an emitter to incandescence and the spectrally confined thermal radiation is converted to electricity by a low-bandgap photovoltaic (PV) cell. Efficiency is dominated by the emitter’s ratio of in-band emissivity (convertible by the PV cell) to out-of-band emissivity (inconvertible). Two-dimensional photonic crystals (PhCs) offer high in...
متن کاملPerformance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems.
One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter ...
متن کاملThree-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014